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Abstract--The physical origin of the well-known maximum occurring in the dynamic heat storage capacity 
of a harmonically excited stab is analysed in terms of the fundamental solutions of Fourier's equation. It 
is shown that, in addition to this maximum, an infinite sequence of exponentially decaying lateral minima 
and maxima occur which are generated by a coherent superposition of two thermal waves propagating in 
opposite directions within the slab. By passing from the parabolic to the hyperbolic description of heat 

conduction, this effect becomes much more pronounced. © 1998 Elsevier Science Ltd. 

1. INTRODUCTION 

The storage capacity of a harmonically heated slab 
has attracted recent interest in connection with the 
contemporary energy-saving efforts in general and the 
passive-solar buildings in special [1]. In this respect 
one encounters in the technical literature experimental 
[1] and theoretical [2] results which find for the heat- 
storage capacity of a slab (excited harmonically at one 
and insulated adiabatically at the other boundary) as 
a function of its thickness, a curve which first rises 
towards a maximum nearly linearly, and then 
descends to an asymptotic value (the storage-capacity 
of a semi-infinite medium) smoothly. 

Our aim in the present note is to show that (a) the 
maximum of the storage-capacity is not  a solitary one 
as believed commonly, but  it is accompanied (with 
increasing thickness of  the slab) by a sequence of 
exponentially decaying lateral minima and maxima 
(Figs 1 and 2), (b) the maxima and minima arise as a 
consequence of a coherent superposition of two basic 
thermal waves (the fundamental  solutions of the 
Fourier  equation) propagating in opposite directions 
within the slab (Fig. 3), and (c) if one passes from the 
parabolic (Fourier) heat conduction equation to a 
hyperbolic (Vernotte-Cattaneo) one, the effect 
becomes much more pronounced (Fig. 4). 

2. BASIC EQUATIONS AND SOLUTIONS 

The starting point of our considerations is the 
energy conservation equation and Fourier 's law : 

0T aq 
p c ~ ( x ,  t) + -~x (X, t) = 0 

OT 
q ( x , t ) = - - 2 ~ x ( X , t )  0 < x < d ,  t>~0 (1) 

The left boundary (x = 0) of the slab is heated har- 
monically, whereas its right boundary (x = d) is kept 
insulated adiabatically : 

T(0, t ) =  To coswt, q(d , t )=O,  t>~O (2) 

Because we are interested in the harmonic response in 
the slab (which governs the system after the transients 
have died out), we pass from real to complex quan- 
tities according to the usual prescriptions : 

T(x, t) ~ 7~(x, t) = T(x) exp(iwt) 

q(x, t) ~ O(x, t) = (t(x) exp(iwt) (3) 

where, in accordance with the boundary  conditions 
(2): 

7~(0) = To and ~(d) = 0 (4) 

In this way, the physical quantities will be recovered 
from the final equations by taking the real part of the 
corresponding complex ones. 

By assuming constant  thermophysical properties, 
the system (1) can be solved in the present case easily. 
Its complex solution, satisfying the boundary con- 
ditions (2), reads as : 

+ x e/0O '+ ;) 7~(x, t) = To A + e 

x . x)] 
+ A  e-;e,(~,-~ -[~+(x)+i0_(x)le,~X 

c~(x, t) = - - ( l+i)~To[A+e+~d( '° '+~)  

- A  e- ;e ' (  ~°'- - [ O + ( x ) + O _ ( x ) l e  ~ '  

(5) 

where 
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A + amplitudes, eqn (6) 
a thermal diffusivity, eqn (6) 
c specific heat 
d slab-thickness 
i 
n natural  number  
Q heat-storage capacity 
q heat flux 
T temperature 
t time 
v phase-velocity, eqn (7) 
x position coordinate 
z dynamic thickness, eqn (6). 

Greek symbols 
7 parameter, eqn (23) 
A wavelength, eqn (7) 

NOMENCLATURE 

2 

P 

T 

thermal conductivity 
density 
penetration length, eqn (6) 
dimensionless time, T = ~ot 
excitation frequency. 

Subscripts 
-t- fundamental  solutions 

semi-infinite medium 
H hyperbolic. 

Superscripts 
A complex quanti ty (T and q) 
~ support function, eqn (18) 

Q as function of z only 
* starting moment  of the half- 

period• 
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Fig. 1. The storage-capacity curve and below it the "support- 
curve" as given by eqns (11) and (18), respectively. The 
support-curve points just to the subsequent maxima and 

minima of the capacity-curve. 
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Fig. 2. Detail of Fig. 1 in which, due to the numerical mag- 
nification, also the first minimum of the storage capacity 

becomes visible. 

1 d 
A+ =~[1 -T- t anh ( l+ i ) z ] ,  z = - ,  

I T  

e = and a = 0 c (6) 

~ denotes here the '°penetration length" of thermal 
waves in the material considered, a is its thermal 
diffusivity and z denotes the "dynamical thickness" of 
the slab. 

A simple inspection of eqns (5) leads to the fol- 
lowing physical picture. The complex temperature and 
flux fields are superpositions of plane waves pro- 
pagating in the slab with decreasing amplitudes from 
right to left ( + )  and from left to right ( - ) ,  respec- 
tively, with the same phase-velocity v and having the 
same wavelength A : 

v = ~r~o = 2 ~  A = 2~r  (7) 

The wavelength A decreases as ~o 1/2 with increasing 
excitation-frequency 09, but  it is independent of the 
boundary  condition at x = d and the thickness d of 
the slab. In addition to the excitation-frequency ~o, it 
only depends on the thermal diffusivity of the material 
considered. According to eqn (7) the wavelength A of 
these dispersive waves is aproximately six times larger 
than the penetration length or. This special cir- 
cumstance leads to a quite paradoxical of  behaviour 
of thermal waves. It means, namely that these waves 
can only develop and manifest their actual wave- 
features far beyond that of their own penetration length 
a in the medium. In this "cold region", such expo- 
nentially vanishing perturbations can practically not 
be detected experimentally. Even a "numerical  detec- 
t ion" of their effects, e.g. in the dynamic heat-storage 
capacity of the slab (Section 3) requires a substantial 
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Fig. 3. The overlapping maxima at z~ = 1.18251 in the total 
storage capacity (11) and in its components (12). 
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Fig. 4. Heat storage capacity of the slab for the hyperbolic 
heat conduction with 7 = 5, compared to that of the para- 

bolic case (y = 1). 

substantially reduced compared to eqn (7) and all 
the typical (damped) wave effects become apparent 
(Section 4) [6]. 

3. THE STORAGE CAPACITY 

We discuss in this section the total heat-storage 
capacity of the slab during the half-period r~/o9 of the 
harmonic excitation, as well as the individual con- 
tributions of the two basic plane waves ~_+ (x, t) given 
by eqn (5), to this quantity. All these storage capacities 
will be considered as functions of the starting moment 
t* of the half-period, and the dynamic thickness of the 
slab, z. 

The total loading-flux of the slab in terms of the 
individual contributions mentioned is : 

c~(0, t) = [q+ (0) + ~_ (0)] e TM 

=(l+i)2- Toe~'tanh(l+i)z (8) 
a 

and, thus, the heat entering the slab in a half-period 
across a surface of 1 m 2 of its boundary x = 0 is given 
by 

1 I ~*+~ - -  R e [ 0 ( 0 ,  t)]  d z  (9 )  

where r = cot and ~* = o~t*. By performing the inte- 
gration we get : 

I [ sin 2z ~7 
Q = Q ( z ) . c o s  3 ~ / 4 + r * + a r c t a n ~ ) J ,  (10) 

where 

"numerical magnification". This is the reason why, 
except for the first maximum, the subsequent local 
minima and maxima of the storage-capacity still 
remained hidden. In the "hot region" x < or, however, 
where the thermal effects are strong, the wave nature 
is still present in an "embryonic" form due to the slab- 
thickness less than a sixth of the wavelength. The 
origin of this strange situation stems from the para- 
bolic character of Fourier's partial differential equa- 
tion comprised in eqn (1). The absence of the second 
time-derivative in this equation (which would confer 
to Fourier's equation the character of a usual damped- 
wave-equation, similar to the "telegraphist's equa- 
tion", e.g.) is equivalent to the tacit assumption of an 
inertialess propagation of heat with infinite signal- 
velocity in any medium. This implies in turn that the 
"wave-damping" present in Fourier's equation in the 
form of the first time-derivative acts necessarily on 
the inertialess heat transmission as an "overdamping" 
(similarly to the action of viscosity on the motion of 
a weak spring-mass system immersed in honey). The 
complementation of Fourier's equation to a hyper- 
bolic form, however takes care of both, the require- 
ment of transmission inertia as well as the finite signal 
velocity [3-5]. As a consequence, the wavelength is 

/cosh 2 z -  cos 2z 
Q(z) = x / ~ Q o ~ ,  (11) 

and Q~ = 2x/~2T0/~oa represents the dynamic stor- 
age-capacity of the semi-infinite medium (z --* ~ )  in 
the half-period n/og. 

The detailed balance of the total storage-capacity 
in terms of individual contributions of the heat fluxes 
included in eqn (8) is now given by Q = Q++Q_ 
where, similarly to eqns (10)-(11) : 

_ Q~ /cosh2zT-sinh2z cos Ll-3n/4+~* 

( sin2z I I  
-T- arctan \ c o s h 2 z - T - s i ~ z + c o s 2 z / J  (12) 

results. All the storage-capacities Q, and Q_+ are now 
functions of two independent variables, r* and z. We 
are interested in the (positive), maxima and minima 
of these functions. 

By starting with Q, one immediately sees that this 
function reaches its (positive) extrema when z = z,, 
where z, are the (positive) roots of equation 

dQ_(z)/dz = 0, i.e. of tan2z,  = - t a n h 2 z ,  (13) 
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and when, at the same time, ~* (which is obviously 
defined modulo 2n) is chosen as : 

5~ { sin 2z, "~ 
T* = ~ - a r c t a n  \ s inh  2z, J (14) 

The curve - t a n h 2 z  has infinite many intersection 
points with the family of curves tan2z. The inter- 
section points correspond (for z > 0) to the values 
z = z, extremizing the total heat storage capacity Q. 
For these values we also can deduce from eqn (13) a 
simple approximation formula : 

z, = ( 4 n - 1 )  8 ,  n =  1,2,3 . . . .  (15) 

The precision of this simple approximation becomes 
better and better with increasing n. Its performance, 
however is already for n = 1 and 2 impressive. Thus 
compared with the values z~ = 1.18251 and 
z2 = 2.7489 obtained by numerical solving of eqn (13), 
eqn (15) yields z~ = 1.17809 and z2 -- 2.74889. The 
iteration formula : 

z~k) = _1 [ m r -  arctan(tanh 2z~, k 1))], 
2 

k = 1,2,3 . . . .  

(16) 

improves the performance of eqn (15) again (by star- 
ting with eqn (15) as z] °), e.g., we obtain in the first 
and second step z] ° ) =  1.18258 and z~ 2) = 1.18250, 
respectively). 

The asymptotic formula 

Q(z) =(1-2e-Z ' -cos2z)Qo~ (17) 

valid for z >> 1 shows that the storage capacity of the 
slab does not  approach the capacity Qo~ of the semi- 
infinite medium smoothly, but  oscillates around this 
value indefinitely with an amplitude which decreases 
exponentially for increasing z. This is the reason why 
the usual computat ion reveals only the first, i.e. the 
absolute maximum, QI = 1.14299"Q~ of Q, cor- 
responding to Z = Z l = l . 1 8 2 5 1  and ~ * = ~ * =  
3.7949. In order to see the subsequent local minima 
and maxima of Q, a substantial numerical mag- 
nification is necessary. The first min imum e.g., which 
corresponds to z = z 2 = 2 . 7 4 8 9  and ~ * = ~ * =  
3.9327, lies a t  Q2 = 0.99422" Qo~, i.e. very close to the 
asymptotic value Qo~. In spite of these exponential 
weakness of the effect considered, there exists a possi- 
bility for marking the extrema of the storage capacity 
Q(z) graphically by making use of the "support  func- 
t ion" 

Q(z) - I sinh 2z cos 2z - cosh 2z sin 2zl Qo~ (18) 
cosh 2z + cos 2z x/~ 

of Q (obtained by eliminating z* between eqn (10) 
and 8Q/8~* = 0). The function eqn (18) possesses the 
remarkable property that its maxima are reached in 
the same points z = z, as the extrema of Q(z). More- 

over, the two functions coincide in these and only in 
these points, i.e. Q(zn) = Q(z,). In other words, the 
total storage-capacity Q(z) which we are interested in, 
is such an envelope of the Q(zn) which lies on the 
maxima of this support function Q(zn) just with its 
own subsequent maxima and minima, respectively. 
This subtle circumstance is shown graphically in Fig. 
1. The next picture, Fig. 2 shows a detail of Fig. 1, 
magnified around the asymptotic value O./Qc~ = 1 so 
that the first maximum and minimum become visible. 
The Q-curves in Figs 1~4 are all normalized to Q~. 

With the aid ofeqns (15), (7) and (6) we can express 
the slab-thickness d, corresponding to the extrema 
Q(zn) of the total storage capacity at z = z, as follows : 

A 4 n -  1 
d , , = ~ z n -  16 A (19) 

Here A is the wavelength of the thermal waves, and 
the range of validity of eqn (19) coincides, obviously 
with that of  eqn (15). From eqn (19) results further: 

A 
d2,+l = d l  + n ~ -  

A 
d2,+2 = d2 + n ~  (20) 

Therefore, if we start with d = d~ and z* = ~* where 
Q reaches its absolute maximum (or with d = d2 and 
~* = ~* where Q reaches its first local minimum) and 
increase the thickness of a slab by a natural  multiple 
of the half-wavelength A and chose the starting 
moment  z* according to eqn (14), the total storage 
capacity Q jumps always from a local maximum (or 
minimum) to the next. This relationship between the 
slab-thickness and wavelength of thermal waves 
resembles the well known commensurabili ty effect 
encountered in the case of the usual standing waves. 

Let us now examine the physical relationship 
between the extrema of the total storage capacity Q 
shown in Figs 1 and 2 and the slope of its components 
eqn (12). To this end we first calculate the partial 
derivative of Q_+ with respect to z. After some algebra 
we obtain that the solutions z = zn of 
8Q+ (z, z*)/Oz = 0 are identical with those o feqn  (13). 
This means that for z* = ~* and z = z, the total stor- 
age-capacity Q as well as its components Q+ are 
extremized simultaneously. This circumstance may be 
seen in the plots of the functions eqns (11) and (12), 
in Fig. 3 convincingly (where eqn (12) was taken for 
z* = z*). We may thus draw the conclusion that the 
local maxima and minima of the total heat capacity 
Q result from a coherent superposition of the two 
basic thermal waves propagating in opposite direc- 
tions within the slab. The individual contributions of 
these two waves to the loading of the slab at x = 0 are 
obtained from (12) as : 

1/" sinh 2z, \ - 
Q+ [ . . . .  ;~.=~: = ~ ~ 1 -T- cosh~ccos2z-lQ(z,).,.~,/ (21) 
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It is important to realize at this point that the direction 
of the energy transport due to the right-running and 
the left-running components of the thermal wave 
4(x, t), is independent of their direction of propa- 
gation which still remains unchanged in time. Indeed, 
as a requirement of the second law of thermodynamics 
(included via Fourier's law), each of the basic waves 
q+_(x, t) transports energy across any plane x = x0, 
0~<x0~<d, of the slab from left to right when 
q+_(xo, t) > 0 as well as from right to left when 
q_+ ()Co, t) < 0, respectively, in spite of the fact that their 
phase velocities always point in the same direction. 

In order to illustrate these results quantitatively, 
we have calculated the detailed balance for a slab of 
dynamic thickness z~ = 1.18251, which corresponds 
(for z * =  z* = 3.7949) to the absolute maximum 
Q = Q1 = 1.14299" Q~ of the total storage-capacity. 
The contribution of the components to Q are 
Q+ = 0.075849- Q~, and Q_ = 1.06714" Q®, respec- 
tively. Therefore, approximately 94% of the total stor- 
age-capacity Q1 is due to the heat carried by the wave 
q-(x, t) propagating from left to the right in the slab. 
The wave ~ (x, t) supplies an amount of 6%, only. 

4. THE EFFECT OF HYPERBOLICITY 

We close this paper by writing down the main 
results of the calculations carried out on the ground 
of the Vernotte-Cattaneo hyperbolic heat conduction 
equation [3, 4]: 

(02  l vr ) 
c3~ = a \ Ox2 c~ (22) 

where Co denotes the finite "signal"-velocity of the 
perturbations of the temperature field (for details of 
the following results see [6]). 

In this case (indicated by a subscript/4) the pen- 
etration length of the heat waves increases comparing 
to the parabolic case by the factor 7, aN = 7a, while 
their wavelength and phase velocity decrease by the 
same factor, AN = 2ha/7, vN = v/7. Comparing to 
2xaH the, wavelength Au experiences even a quadratic 
reduction with 7, AN = 2xaN/72, where 

°9~ ° ~ (c°a~ 2 (23) 
7 = + l + \ c ~ j  

The expression eqn (11) of the heat stored in the half 
period x/~o is substituted now by : 

_ _  cosh z-coscos2 z 
QN(z) = x] 1 + 7 4 ~  cosh_2z+cos27z Q~ 

7 

(24) 

whereas the maxima and minima of Q(z) correspond 
in this case to the (positive) roots z = zn of equation 

2 
7 2 tan 27z = - t a n h :  z (25) 

7 

In order to get a first insight in the effect of hyper- 
bolicity, we have plotted this function in Fig. 4 for a 
finite signal velocity corresponding to 7 = 5. A com- 
parison with Fig. 1 shows dramatic differences with 
respect to the parabolic case. All the maxima and 
minima become now clearly visible. The absolute 
maximum is a multiple of the parabolic one and cor- 
responds to a substantially smaller dynamic thickness 
of the slab. Similarly, to the parabolic case, analytic 
approximations allow a deeper insight into the struc- 
ture of function eqn (24), again [6]. 

5. CONCLUSIONS 

The main results of this paper may be summarized 
as follows. 

1. The heat-storage capacity of a homogeneous slab 
excited harmonically at one and kept insulated 
adiabatically at the other boundary shows as a 
function of the slab thickness an infinite sequence 
of local maxima and minima which are generated 
by a coherent superposition of two basic thermal 
waves (the fundamental solutions of Fourier's 
equation) propagating in opposite directions along 
the slab. Due to the purely diffusive character of the 
Fourier-equation however, the subsequent extrema 
of the storage capacity are attenuated expo- 
nentially (the "support-curve" in Figs 1 and 2 vis- 
ualizes their position). Nevertheless, in the case of 
thick slabs one may recognise between the slab- 
thickness and wavelength a commensurability 
relationship eqn (20) similar to that encountered 
in the case of the usual standing waves. 

2. The main contribution to the heat stored in the 
slab comes from the thermal wave propagating 
from the excited boundary towards the adiabatic 
case. The other basic wave, propagating in the 
opposite direction, supplies to the incoming heat 
at x = 0 a contribution of about 6% only (Fig. 3). 

3. For the hyperbolic heat conduction the penetration 
length of the heat waves increases and their wave- 
length decreases compared to the parabolic case. 
The heights and depths of the maxima and minima 
of the storage-capacity curve also experience a dra- 
matic increase (Fig. 4). The practical relevance of 
this effect in connection with phenomena similar 
to that reported in [7-9] is the object of further 
research. 
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